Quantum-mechanics-based molecular interaction fields for 3D-QSAR
نویسندگان
چکیده
منابع مشابه
Quantum-mechanics-based molecular interaction fields for 3D-QSAR
Computer-aided drug design (CADD) shift toward using quantum-mechanics (QM)-based approaches is not only the result of the ever growing computational power but also due to the need for more accurate and more informative approaches to describe molecular properties and binding characteristics than the currently available ones. QM-approaches do not suffer from the limitations inherent to the ball-...
متن کاملQuantum Mechanics of Proca Fields
We construct the most general physically admissible positive-definite inner product on the space of Proca fields. Up to a trivial scaling this defines a five-parameter family of Lorentz invariant inner products that we use to construct a genuine Hilbert space for the quantum mechanics of Proca fields. If we identify the generator of time-translations with the Hamiltonian, we obtain a unitary qu...
متن کاملDeveloping accurate molecular mechanics force fields for conjugated molecular systems.
A rapid method to parameterize the intramolecular component of classical force fields for complex conjugated molecules is proposed. The method is based on a procedure of force matching with a reference electronic structure calculation. It is particularly suitable for those applications where molecular dynamics simulations are used to generate structures that are therefore analysed by electronic...
متن کاملBCL::EMAS--enantioselective molecular asymmetry descriptor for 3D-QSAR.
Stereochemistry is an important determinant of a molecule's biological activity. Stereoisomers can have different degrees of efficacy or even opposing effects when interacting with a target protein. Stereochemistry is a molecular property difficult to represent in 2D-QSAR as it is an inherently three-dimensional phenomenon. A major drawback of most proposed descriptors for 3D-QSAR that encode s...
متن کاملQuantum Mechanics from Self-Interaction
We explore the possibility that zitterbewegung is the key to a complete understanding of the Dirac theory of electrons. We note that a literal interpretation of the zitterbewegung implies that the electron is the seat of an oscillating bound electromagnetic field similar to de Broglie’s pilot wave. This opens up new possibilities for explaining two major features of quantum mechanics as consequ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Cheminformatics
سال: 2014
ISSN: 1758-2946
DOI: 10.1186/1758-2946-6-s1-o10